YENİ EKLENENLER

Üçgende Kenarortay Bağıntıları


YGS-LYS Üçgende Kenarortay Bağıntıları

Konu Anlatımı
Soru Çözümleri
Testler
...




KONU ANLATIMI
ALTERNATİF-2


Üçgende Kenarortay Bağıntıları ve Özellikleri

1. Ağırlık Merkezi
Üçgenlerde kenarortaylar bir noktada kesişirler.Kenarortayların kesişim noktasına ağırlık merkezidenir.
ABC üçgeninde [AD], [BE] ve [CF] kenarortaylarının
kesiştikleri G noktasına ABC üçgeninin ağırlık merkezi
denir.
a. Ağırlık merkezi kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde böler.
ABC üçgeninde D, E, F noktaları bulundukları kenarların
orta noktaları ve G ağırlık merkezi ise

eşitlikleri vardır.

b. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir.


c. ABC üçgeninde [AD] kenarortay ve
|AG| = 2|GD| olduğundan G noktası
ağırlık merkezidir.

d. ABC üçgeninde [AD] kenarortay ve |CG| = 2|FG|
olduğundan G noktası ağırlık merkezidir.


e. ABC üçgeninde
|AG| = 2|GD| ve |CG| = 2|GF|
eşitliğini sağlayan G noktası ABC
üçgeninin ağırlık merkezidir.
2. Dik üçgende hipotenüse ait kenarortay hipotenüsün yarısına eşittir.
ABC dik üçgeninde [BD] hipotenüse ait kenarortay
|AG|=|DC|=|BD|

3. Kenarortayların Böldüğü Alanlar
a.Kenarortaylar üçgenin alanını altı eşit parçaya bölerler.

b.G ağırlık merkezi köşelere birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.


c. G ağırlık merkezi kenarların orta noktaları ile birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.

4.ABC üçgeninde kenarortaylar ve [FE] çizilirse
|AK| = 3x
|KG| = x
|GD| = 2x eşitlikleri bulunur.

K noktası [AD] kenarortayının orta noktasıdır.
[FE] //[BC]
2[FE]=[BC]

a. ABC üçgeninde kenarortaylar ve [FE] çizildiğinde
şekildeki gibi bir alan bölünmesi oluşur.

b.Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür.

5. Kenarortay Uzunluğu
ABC üçgeninde A köşesinden çizilen
kenarortayın uzunluğuna Va dersek
Bu bağıntı diğer kenarortaylar içinde geçerlidir.

Kenarortaylar taraf tarafa toplanırsa
Kenarortaylar taraf tarafa toplanırsa

6. Dik Üçgende Kenarortaylar
A açısı 90° olan bir dik üçgende kenarortaylar arasında



Hiç yorum yok:

Yorum Gönder